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Within the framework of the Zel’dovich–Frank-Kamenetskii theory of a laminar flame, an eigenvalue
linearized stationary boundary-value problem is considered to establish the dependence of the flame
velocity on the curvature of its front of sinusoidal shape. The analysis has been carried out for arbi-
trary Lewis numbers. Various mechanisms contributing to the smoothing out of the bent front of the
flame are considered.

One of the most puzzling natural phenomena is spontaneous turbulization of a flame in gas mixtures.
Two types of instability are known that might lead to the incipience of this regime of combustion: hydrody-
namic [1, 2] and diffusional-thermal [3, 4]. In the case of generally formulated problem of stability, the be-
havior of combustion is considered in relation to arbitrary disturbances that cause the bending of a plane
laminar flame moving with velocity vn relative to the initial combustible mixture. In turn, the bending of the
combustion front leads to a new value of the normal velocity of flame propagation, which depends on the
curvature of its front. This means that now the velocity of the flame vn is no longer a constant, as is gener-
ally assumed, of the given combustible mixture but is also related to the newly arising conditions of combus-
tion. In the present context, it is related to the combustion-front curvature. The idea of the possible
dependence of the flame velocity on the curvature of its front was proposed by Markstein [2, 4] to explain
the stability of a flame with respect to hydrodynamic disturbances.

The first attempt at a theoretical analysis of the given problem was made in [3] and in an extended
form was described in [4]. It was assumed in these works that the dependence of the velocity of a flame on
the curvature of its front must be evident, as an indirect result, from the analysis of diffusional thermal insta-
bility. However, although the needed formula was given, no mention was made of the technique of its deri-
vation.

The Landau–Darrier theory of hydrodynamic instability with a paradoxical conclusion on the impos-
sibility of the existence of a laminar flame calls into question the validity of the Zel’dovich–Frank-Kamenet-
skii theory [5] constructed on the basis of the fundamental ideas advanced by A. N. Kolmogorov, I. G.
Petrovskii, and N. S. Piskunov [4]. If the Zel’dovich–Frank-Kamenetskii theory fails to explain the stability
of a laminar flame with respect to hydrodynamic disturbances, then it must be admitted that this elegant and
physically deep theory is incomplete. In essence, the problem amounts to the determination of the form of the
so-called Markstein constant, which is the coefficient of the curvature in the expression for the velocity of a
bent flame. The value he suggested for this coefficient ensures hydrodynamic stability of a laminar flame up
to a Reynolds number of Re D 102. On the other hand, in experiments, the stability is observed up to Re
D 104.

Formulation of the Mathematical Problem. Mathematically speaking, we are to solve the eigen-
value boundary-value problem. Physically, we are to find a new mode of burning that changes the former
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stationary regime on introduction of a stationary (and generally nonstationary) disturbance that led to the
bending of the laminar combustion front.

We will note the fundamental differences between Markstein’s method of finding the length (the
method given in the present work) and that suggested earlier in [3]. These differences are:

(1) the velocity of flame propagation is the eigenvalue of the boundary-value problem not only for a
plane combustion front but also in the general case of a bent front;

(2) investigation of diffusional-thermal instability and derivation of the flame velocity as a function
of the curvature of its front are problems different in physical content.

The plane stationary front of the flame in a gas mixture with a chemical reaction of the first order
proceeding in it is described by the system of equations [4]

vn 
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dx′
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d2T

dx′
2
 + 
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The introduction of the dimensionless parameters
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 (T − T0) ,   b = 

N0 − N

N0
 ,   x = 

x′v∗
κ

 ,   w = 
vn

v∗
 ,   Le = 

D

κ
 ,   Tb = T0 + 

Q
cp

 N0 ,

where v∗  is the velocity scale defined below, converts system (1) into
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k0κ

v∗
2  (1 − b) exp 




− 

E
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 . (2)

The following boundary conditions correspond to the problem of flame propagation according to Eq.
(2):

x → − ∞ :   u = b = 0 ;   x → + ∞ :   du ⁄ dx = db ⁄ dx = 0 . (3)

Now, on the plane front we superimpose a small disturbance that causes the same small deformation
of the front over the transverse coordinates y, z. From the physical point of view, this changes little the spa-
tial distribution of the velocity of the combustible mixture gas that impinges on the stationary plane front of
the flame, and a new stationary state of the combustion process develops. Then, accurate to the small second-
order values in the degrees of disturbances, the system of equations that describe the combustion front takes
the following form:

w 
∂u

∂x
 = ∆u + W ,   w 

∂b

∂x
 = Le ∆b + W , (4)

where ∆ is the Laplace operator in the Cartesian coordinate system and W has not been linearized as yet to
make the equations shorter. We denote the solutions of system (2) and (3) by u0(x), b0(x), and w0. The solu-
tion of Eqs. (4) for a slightly bent front of the flame will be sought in the form

u = u0 (x) + V (x, y, z) ,   b = b0 (x) + P (x, y, z) ,   w = w0 + w′ , (5)

where V and P are new independent functions. The substitution of Eq. (5) into Eq. (4), subsequent lineariza-
tion, and the use of Eq. (2) in intermediate manipulations after simple transformations leads to the equations
for V and P:
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du0
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 w′ = Le ∆P − w0 
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∂2
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∂2
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(6)

In Eqs. (6), the function W depends only on u0(x) and b0(x).
After that, system (6) is transformed as follows. The quantity w′ is presented in the form w′ =

− q∆′ξ, where q = const is the Markstein constant in dimensionless form and ξ is the deformation of the
combustion front. For the functions V, P, and ξ we adopt

V = ξF (x) ,   P = ξG (x) ,   ∆′ξ = − λ2ξ ,   λ2 = λ1
2 + λ2

2 ,

where λ1 and λ2 are the wave numbers in the y and z directions. As a result, Eq. (6) is transformed into

d2F

dx2  − w0 
dF

dx
 − λ2F + 

∂W

∂u0 F = − 
∂W

∂b0 G + qλ2 
du0

dx
 ,

Le 
d2G

dx2  − w0 
dG

dx
 − λ2 Le G + 

∂W

∂b0 G = − 
∂W

∂u0 F + qλ2 
db0

dx
 .

(7)

We assume that the parameter λ is prescribed. Then this necessitates the specific representation of the
eigenvalue of w: w = w0 − q∆′ξ from Eqs. (4). In the given form of w, the constant q is the eigenvalue of
Eqs. (7) with corresponding boundary conditions whose formulation will be given below. But first we con-
sider a plane flame.

Plane Flame. The task of solving Eqs. (7) with the Arrhenius law (the third relation in (2)) is mathe-
matically very formidable. It can be simplified substantially by using W in the form

W = 
k0κ

v∗
2  (1 − b) exp 




− 

E

RTb




 η (u − u∗ ) , (8)

where η is the Heaviside unit function and u∗  is the dimensionless temperature whose explicit form can be
determined by requiring the coincidence between the form of the flame velocity asymptotically in the limit
u∗  → 1 with the known result of the Zel’dovich–Frank-Kamenetskii theory.

The given form of W preserves the main properties of the Arrhenius law: its nonlinearity and strong
dependence on temperature. It is clear that in contrast to analytical investigations [3, 4], where W was repre-
sented in the form of the Dirac δ-function, the form (8) has more information about the character of the
occurring chemical reaction.

Positioning the place of discontinuity (8) at the point x = 0 and equating the subscripts 1 and 2 to the
temperature u and the burning-out b respectively for x < 0 and x > 0, we obtain the distributions u0(x) and b0(x):

x < 0 :   u1
0 = u∗  exp (w0x) = 

k

k + w0 exp (w0x) ;
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u∗





2

 
a

Le + (1 − u∗ ) ⁄ u∗
 ,

(9)

where k is the positive root of the equation Le k2 + w0k − a = 0.
Solutions (9) satisfy boundary conditions (3), the continuity conditions u0(x) and b0(x), and their first

derivatives at the point x = 0.
In the limit, a → ∞ (then u∗  → 1). If we adopt that

1 − u∗
u∗

 C 1 − u∗  = 
Tb

Tb − T0
 √2T0

Tb
 
RTb

E
 ,

we obtain an expression for the flame velocity vn given in [4]. It is convenient to take vn as the velocity scale
v∗ . Then

w0 = 1 ,   a = Le n 




n − 1

n
 

E

RTb





2

 ,   n = 
Tb

T0
 . (10)

With account for the above, we will assume in what follows that w0 = 1.
With the accepted form of the ignition temperature u∗  in the limit E ⁄ RTb → ∞ the rate of chemical

reaction in the form of (8) tends to the Dirac δ-function and arbitrarily exactly approximates a similar expres-
sion according to the Arrhenius law, since the solutions of Eqs. (2) and (3) in this limit coincide for both
types of the reaction rate.

Dependence of the Flame Velocity on the Front Curvature. Using Eqs. (9) in Eqs. (8), we have

 
d2F

dx2  − 
dF

dx
 − λ2F + a (1 + b0) δ (u0 − u∗ ) F = aη (u0 − u∗ ) G + qλ2 

du0

dx
 ,

Le 
d2G

dx2  − 
dG

dx
 − λ2 Le G − aη (u0 − u∗ ) G = − a (1 − b0) δ (u0 − u∗ ) F + qλ2 

db0

dx
 .

(11)

We formulate the boundary conditions for system (11). It follows from (3) that F and G vanish when
x → −∞, and their first derivatives do the same when x → +∞. The values of u, b, du ⁄ dx, and db ⁄ dx must be
continuous at the point x C 0. The condition of the continuity of u and b yields the equalities

F1 = F2 ,   G1 = G2 . (12)

The condition of the continuity of their derivatives (more precisely, of energy and mass fluxes) leads to the
requirements

d2u1
0

dx2  + 
dF1

dx
 = 

d2u2
0

dx2  + 
dF2

dx
 ,   

d2b1
0

dx2  + 
dG1

dx
 = 

d2b2
0

dx2  + 
dG2

dx
 . (13)
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Since u0(x) and b0(x) are the solutions of the equations

du0

dx
 = 

d2u0

dx2  + a (1 − b0) η (u0 − u∗ ) ,   
db0

dx
 = Le 

d2b0

dx2  + a (1 − b0) η (u0 − u∗ ) , @ABSATZ0 = indicating the

presence of the discontinuity in the second derivatives of u0(x) and b0(x) at the point x = 0

d2u1
0

dx2  − 
d2u2

0

dx2  = k ,   
d2b1

0

dx2  − 
d2b2

0

dx2  = 
k

Le
 ,

conditions (13) take the following final form:

dF1

dx
 − 

dF2

dx
 + k = 0 ,   

dG1

dx
 − 

dG2

dx
 + 

k
Le

 = 0 . (14)

In addition to this, the first derivatives of F(x) and G(x) themselves are discontinuous at the point x
= 0, as follows directly from Eq. (11). Integrating Eq. (11) over the vanishingly small region near x = 0 and
using the known [6] properties of the δ-function, we find

dF2

dx
 − 

dF2

dx
 + (k + 1) F2 = 0 ,   

dG2

dx
 − 

dG1

dx
 + 

k + 1

Le
 F2 = 0 . (15)

But one of the relations in (15) is extraneous, since the second expressions in (14) and (15) lead to the equal-
ity

F2 = − 
k

k + 1
 = F1 . (16)

This, together with the first relation in (15), leads to the already available first condition from Eq. (14). One
of the equalities of (16) can be taken as a boundary condition which will be supplementary to Eqs. (14) and
(15). Thus, when x = 0, we have five boundary conditions for finding the four unknown integration constants
(after the conditions for x → ± ∞ are satisfied) and the eigenvalue q.

We now begin solution of Eqs. (11). For the region with x < 0 from Eq. (11), with Eq. (10) taken
into account, we obtain the system of equations

d2F1

dx2  − 
dF1

dx
 − λ2F1 = qλ2 

k

k + 1
 exp (x) ,   Le 

d2G1

dx2  − 
dG1

dx
 − λ2 Le G1 = qλ2 

k2

a
 exp (− kx) .

Its solutions that vanish for x → −∞ are the following:

F1 = f1 exp (αx) − 
qk

k + 1
 exp (x) ,   α = 

1 + √ 1 + 4λ2

2
 ;

G1 = g1 exp (βx) − 
qk2

a Le
 exp (x ⁄ Le) ,   β = 

1 + √ 1 + 4λ2 Le2

2 Le
 .

(17)

Similarly, in the region with x > 0 we have
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d2F2

dx2  − 
dF2

dx
 − λ2F2 = aG2 + qλ2 

k

k + 1
 exp (− kx) ,   Le 

d2G2

dx2  − 
dG2

dx
 − λ2 Le G2 − aG2 = qλ2 

k2

a
 exp (− kx) ,

G2 = g2 exp (− χx) − 
qk2

a Le
 exp (− kx) ,   χ = 

− 1 + √1 + 4 Le (λ2 Le + a)
2 Le

 ,

F2 = f2 exp (− γx) + A1g2 exp (− kx) − qA2 exp (− χx) ;   γ = 
− 1 + √ 1 + 4λ2

2
 ,

A1 = 
a

χ2 + χ − λ2 ,   A2 = 
k

k + 1
 
k2 + k − Le λ2

k2 + k − λ2  .

(18)

In Eqs. (17) and (18), the quantities f1, f2, g1, and g2 are integration constants.
The substitution of Eqs. (17) and (18) into boundary condition (12) leads to the algebraic equations

f1 − q 
k

k + 1
 = f2 + g2A1 − 

q
Le

 A2 ,   g1 = g2 . (19)

The use of Eqs. (17) and (18) in Eq. (14) yields

αf1 − q 
k

k + 1
 + γ f2 + χg1A1 − 

q
Le

 kA2 + k = 0 ,

βg1 − q 
k2

a Le2 + χg2 − q 
k3

a Le
 + 

k

Le
 = (β + χ) g1 − 



q

Le
 − 1


 

k

Le
 = 0 ,

(20)

where for the second expression the second equality of Eqs. (19) was used and also (see Eq. (9))
Le k2 + k − a = 0.

Taking into account the second equality of Eqs. (19), we find

g1 = 
k

Le (χ + β)
 


q
Le

 − 1

 . (21)

From condition (16) we define f1:

f1 = 
k

k + 1
 (q − 1) . (22)

Simple calculations from the first relations of Eqs. (19), (20), and (21), (22) yield the equation

k

k + 1
 [q (α − 1) − α − γ] + 

χ − γ
χ + β

 
k (Le k + 1)
χ2 + χ − λ2  

k

Le
 


q

Le
 − 1


 − 

k (k − γ)
k + 1

 
k2 + k − Le λ2

k2 + k − λ2  


q

Le
 − 1


 + k = 0 . (23)

In this expression, we let the parameter

k C √ a
Le

 = √n  
n − 1

n
 

E
RTb
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go to infinity, i.e., we consider the case of large activation energy. With this limit the terms proportional to
k cancel out. Neglecting the small values of the order of 1 ⁄ k and above, we have

q = Le 
1 ⁄ Le − β + λ2 ⁄ α

1 ⁄ Le − β + Le λ2 ⁄ α
 + o (k−1) .

From this it is seen that when Le = 1, q = 1 for any wave numbers. But if Le ≠ 1, then in the limit λ → 0;
when the bent front of the flame is degenerated into a plane surface, then q D λ−2 → ∞, which has no physi-
cal meaning. Therefore, stationary solution of problem (2), (3) with a slightly bent front is possible only in
the case of Le = 1. This result remains valid also for an arbitrary value of k, as can be easily verified by
assuming that Le = 1 in Eq. (23). Taking into account that α = γ + 1 also when Le = 1 χ(χ + 1) =
k2 + k + λ2, β = α, we obtain

(q − 1) 




2γ − k
k + 1

 + 
χ − γ

χ + γ + 1



 = 0 .

The expression within the second parentheses does not vanish for arbitrary values of k and λ; therefore, we
obtain the well-known result that q = 1 [4].

The natural question suggesting itself here is the diffusional-thermal stability of the solutions found.
The necessary, but, most likely, insufficient condition of stability was formulated, even in [3], on the basis of
clear physical arguments: q > 0. It is possible that the value q = 1 found in the present work does not guar-
antee the complete stability of solutions (17) and (18). It is still necessary to find a more exact condition of
stability.

Discussion of the Results Obtained. Thus, in contradiction to the experiment, the investigation car-
ried out demonstrated the impossibility of the existence of a stationary arbitrarily bent flame at arbitrary
Lewis numbers: there is not only a slightly bent flame in experiments, but also a strongly bent one (which,
of course, is described already by the nonlinear theory). Therefore, without invoking additional principles, the
Zel’dovich–Frank-Kamenetskii theory of laminar combustion of gases does not yield the dependence of the
flame rate on the front curvature, which would make it possible to resolve the paradox of the hydrodynamic
instability of flame. Moreover, there is no linear dependence, similar to that from the Markstein theory, of the
flame rate on the front curvature, except for the case of Le = 1.

Returning to the problem of hydrodynamic instability of a laminar flame, we see that with the exist-
ing notions on combustion of gas mixtures this problem cannot be solved completely.

The contradictions between the theory and experiment noted in the previous section can be removed
if we assume that in the stationary flame observed in the experiments a chemical reaction proceeds with an
effective Lewis number equal to unity. This assumption can be substantiated by the fact that the description
of combustion, used in the present work, by the Zel’dovich–Frank-Kamenetskii model that admits arbitrary
Lewis numbers is very simplified. In all probability there are physical principles forbidding the use of Lewis
numbers other than equal to unity in simulation of combustion of gas mixtures by means of a simple molecu-
lar reaction.

In addition to [2], an attempt at a theoretical determination of q was also undertaken in [7], where q
= 1 was found in Markstein’s formulas w′ = − q∆′ξ. The evolution of cellular structures assigned with the
initial profile is investigated numerically in [8] with allowance for the gas viscosity at an infinitely large
activation energy. But from the very beginning the normal velocity of the flame in the formulation of the
problem in [8] (just as in [2, 4, 7]) is assumed to be constant and independent of the front curvature. Never-
theless, in [8] a stable cellular structure does manifest itself, and this is attributed in [8] to the influence of
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nonlinear effects, i.e., the results of [8] point to the possibility of explaining the cellular structure of the flame
without resorting to Markstein’s formula.

In [9, 10], a theoretical study of the cellular structure of flame on the basis of Sivashinskii’s  equa-
tion is carried out, assuming a constant rate of flame on bending of its front. Because of the presence of
different mechanisms that lead to the appearance of terms of the form q∆ ′ξ, they are usually taken as the
dependence of the rate of a flame on the curvature. Taking an elementary example [11], we will show in
which way the terms proportional to the second derivative with respect to the spatial variable can appear
because of the displacement ξ of the flame front. Let Eq. (4) in a nonstationary form be E ⁄ RTb = ∞, Le = 1
(u = b), and the dependence of the temperature and burning-out over the coordinate z be absent:

∂u

∂t
 + w 

∂u

∂x
 = 

∂2u

∂x2 + 
∂2u

∂y2 . (24)

Then, instead of Eq. (5) we have

u = u0 (x) + ξ (y) du0

dx
 , (25)

where u0(x) is the Michelson distribution:

u0 (x) = exp (w0x) ,   x < 0 ;   u0 (x) = 1 ,   x > 0 .

Assuming the flame rate to be independent of the curvature of its front and substituting (25) into
(24), we obtain the equation

∂ξ
∂t

 = 
∂2ξ
∂y2 , (26)

which is the linear part of Sivashinskii’s equation [9, 10] and which describes the smoothing of inhomogenei-
ties of the flame front owing to the dissipative processes of diffusion and heat conduction. Moreover, if the
gas-velocity is taken to be variable (in the former coordinate system associated with a nonperturbed flame),
for example, due to the hydrodynamic drop of pressure, then on the left-hand side of Eq. (26) gas-velocity
perturbation appears additionally and Eq. (26) transforms into the boundary condition from Markstein’s theory
[2] of hydrodynamic instability of a laminar flame. The distribution of temperature (25) means constant den-
sity on both sides of the flame front, in agreement with the physical content of hydrodynamic instability;
pressure perturbations are associated in this case with the perturbations of the gas velocity, rather than tem-
perature and density [1].

CONCLUSIONS

1. Markstein’s linear dependence (with the possible existence of a nonlinear dependence not being
negated) of the flame rate, with the one-stage molecular reaction proceeding in it, on the flame front curva-
ture is possible only at a Lewis number equal to unity.

2. There are two mechanisms favoring the smoothing of the bent flame front: the first is directly
associated with the dissipative processes of reacting gas diffusion and heat conduction and the other with the
dependence of the flame rate on the curvature of its front; the second mechanism is indirectly associated with
the dissipative processes.
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NOTATION

T and u, dimensional and dimensionless temperatures; N, concentration of reacting substance; Q, ther-
mal effect of a chemical reaction; E, activation energy; R, universal gas constant; k0, pre-exponential factor;
vn and w, dimensional and dimensionless velocities of flame motion relative to the initial combustible mix-
ture; cp, heat capacity of a gas mixture at constant pressure; D and κ, diffusion coefficient and thermal dif-
fusivity; x′, coordinate; T0 and N0, initial values of the temperature and concentration of a reacting substance;
w′, change in the flame velocity as a result of the bending of its front; Tb, (temperature of burning) adiabatic
temperature of a flame; W, chemical reaction rate; Le, Lewis number. Subscripts: n, normal; b, burning.
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